ViCoS Video Codec and Video Filters Testing and Analysis System

System Description

Contents

Overview

- Value Proposition
- System key features
 - Client-server architecture
 - DB usage
 - Robustness
 - Easy codec/preset addition
 - Results visualization
- Analysis
- Conclusions

Overview Main Purpose of the System

- Automatically evaluate quality of modern video codec and video filters using objective quality metrics and sequences modification.
- Both overall quality of the codec and quality of separate codec parts can be analyzed using the system.
- Same framework can be used for codec external options analysis and best presets automatically selection for given test set.

Overview High Level View

- <u>Complexity analysis</u>. Sequences with controllable complexity to analyze codec's quality reaction.
- <u>Specific sequences analysis.</u> Synthetic or modified natural sequence. Understanding the detailed structure of those sequences is the basis of analysis.
- <u>Presets analysis.</u> Automatically finding optimal presets using list of possible features. Analyzing codec's algorithm performance.

YUVSOFT

Overview ViCoS Screenshots

framework

YUVSOFT

Report example

81.64

45.43 57.61

0.00

frame rotation analyzer.

tail area analyzer

borders analyzer:

edge capture analyzer

Analyzer weigth

1.00

4.00

0.50

2.00

0.50

0.50

1.00

0.50

1.00

1.50

1.50

1.00

ces flower's inver, data

5

Value Proposition

Video codec developers □ Automatic Quality Assurance Comparison to competitors Easy find weak points of codec Construct best set of predefined presets Video codec users Find the best codec for desired usage area □ Find codec with desired speed/quality characteristics

System Key Features Client-Server Architecture

- All codec, analyzers and metric launches could be parallelized by executing on different PC or cores of one PC
- Any PC could be a Server or a Client
- Shutdown of any client or even server does not lead to system crash or significant results lost – all the works could be continued after restart

System Key Features Data Base Usage

- Results could be saved in Relational Data Base
- ViCoS supports almost any relational data bases management systems through ODBC mechanism:
 - □ MySQL

 - □ Oracle, etc

System Key Features Robustness

Codec failure does not lead to failures – the system continues to work, marking the error for this codec

System Key Features Easy codec/preset Addition

- Unified codec description
- New codec, preset of video sequence addition required user to spend approximately 1 minute

System Key Features Results Visualization

- All obtained results could be visualized very easily
- One of the way special MATLAB framework (could be included in ViCoS delivery) to choose different types of analyzers/metrics/bitrates etc. and types of graphs

System Key Features Huge Amount of Data Processing

- During ViCoS work huge amount of data is produced
- It is processed and categorized very easily and user friendly comparing to set of scripts and batch files, used by codec developers themselves

System Key Features Specific Analysis Types

- ViCoS uses specific type of analysis:
 - well-known (objective metrics)
 - specially developed for the system
 - Edge capture
 - Borders quality
 - Tail area
 - Blurring
 - Synthetic motion
 - And more than 10 other types

Analysis Examples

- Complexity analysis
 - Generate sequences with controllable encoding complexity to analyze codec efficiency using relative marks changing for different complexity values
 - "Encoding complexity" different for rate control, ME, define relative complexities for some subset of video sequences
 - "Relative marks" codecs is not easy to compare, use reference codec to produce reference RD curve and calculate average relative bitrate for the same quality
- Sequences Modifications and Encoding Complexity
 - □ What codec/bitrate/encoding parameters should we choose to be correct?
 - □ Synthetic sequences
 - Frames removal from natural sequence
 - Blurred sequence
 - Replacing some frames of sequence with random uniform noise
 - etc...
- Specific Sequences Analysis
 - □ Moving object tail area, edge capture/distortion
- Overall Quality Analysis
 - □ Combination of metrics, temporal characteristics of per-frame metrics results

Analysis List of analyzers

Analyzer	Type of Sequences	Target Codec Parts	
Decimation	Complexity Modifications	ME, Mode Decision	
Blurring	Complexity Modifications	Mode Decision, Sub-MB RC	
Noise Frames	Complexity Modifications	Frame-level RC	
Noise MB	Complexity Modifications	MB-level RC	
Spatial Noise	Complexity Modifications	MB-level RC	
Chroma ME	Sequences Modifications	ME using chroma components	
Frames Rotating	Sequences Modifications	ME imperfections	
Tail Area	Synthetic Sequence	MB-level RC	
Edge Capture	Synthetic Sequence	ME, Mode Decision	
Synthetic Motion	Synthetic Sequence	ME	
Borders Quality	Synthetic Sequence	ME, MB-level RC	
Overall Quality	Original Sequences	All parts balance	

Analysis Common Approach in Complexity Modifications

- Frames decimation analyzer
- Blurring analyzer
- Noise frames analyzer
- Noise macroblocks analyzer
- Spatial noise analyzer

Analysis Final Marks Construction

Analysis

Optimal Presets Estimation – Use Cases

- Find optimal presets for different encoding speed
- Find the best preset with fixed speed (quality) for competitive analysis
- Choose optimal presets for particular customer conditions (type of sequences, hardware architecture)
- Analysis of codec features performance

Analysis

Optimal Presets Estimation – Technical Details

- Simple language to describe possible codec parameters
- Several algorithms for best preset selection (not simple full search)
- Progressive results obtaining is possible (more resources -> better presets)

Analysis Examples of Blurring Metric

Figure 47. Examples of blurring metrics

D

С

A. Original frame. B. Processed frame with blurring and contrast changing. C. Gradient magnitude estimation. D. Laplacian calculation

Analysis Examples of Metrics:

Border Quality, Tail Area and Edge Capture Quality Metric

- Metrics for synthetic sequences:
 - □ Borders quality metric
 - Tail area metric
 - □ Edge capture metric
- These metrics are represented in the system in ordinary way
- In fact metrics are independent from analyzers

Analysis Examples

Codecs:
x264 (9 presets)
XviD (1 preset)

Sequences

Foreman
Flower
Bus

Codec/preset	Final Mark
x264/SUBME 7	59.93
x264/ME_ESA	57.91
x264/ME_UMH	55.98
x264/ANALYZE_ALL	53.93
x264/REF_4	51.59
x264/ME_DIA	49.70
x264/SLOW	49.17
x264/ANALYZE_NONE	48.67
XviD	46.29
x264/FAST	42.48

Analysis Examples (2)

Analyzer	x264/FAST	XviD
Frame Rotation	90.01	50.73
Overall	37.25	0.00
Decimation	15.07	83.92
Synthetic Motion	50.00	50.00
Blurring	30.45	60.12
Noise Frames	85.13	100.00
Noise MB	34.18	75.79
Noise Spatial	48.97	63.38
Chroma ME	33.90	69.27
Tail Area	68.10	0.00
Borders Quality	16.72	2.31
Edge Capture	0.00	0.00

Analysis Examples (3)

All codecs, Foreman

All codecs, Synthetic Motion

Conclusions

Fully automatic complex codec analysis system, including

- Specific analysis types
- Client-server architecture
- DB usage
- Robustness
- Easy codec/preset addition
- Results visualization

etc.

Contact Information

- WWW: <u>http://www.yuvsoft.com/technologies/vicos</u>
- E-mail: <u>vicos@yuvsoft.com</u>
- Phones:
 +1-(408)-426-5988
 +7-(906)-744-0865

